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Abstract: Large-scale data mining has become a very difficult issue using traditional methods 

because the data complexity is very high. In the proposed approach, an integration of three 

methods; Optimised Principal Component Analysis (OPCA), Optimised Enhanced Extreme 

Learning Machine (OEELM), and stratified sampling, called OPCA-EELM2SS, is presented to 

provide intelligent and enhanced large-scale data mining. OPCA provides a good representation 

of large-scale data sets by using the Stratified Sample (SS). By using OEELM, the optimal 

number of Hidden Nodes (HNs) in ELM is exploited to build a single hidden layer feedforward 

neural network (SLFN). The proposed approach is tested by using nineteen benchmark data sets. 

The experimental results demonstrate the effectiveness of the proposed approach by performing 

different experiments for classical PCA and Independent Component Analysis (ICA), which are 

integrated with the enhanced ELM using different evaluation criteria. For more reliability, the 

proposed approach is compared with many previous methods. 
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1 Introduction 

Recently, data has grown on a large scale in several fields for 

both structured and unstructured or semi-structured or multi-

structured data that is so large that it is complicated to analyse 

using traditional methods (Yadav et al., 2013). Therefore, data  

 

preparation includes all types of processes performed on  

data to prepare it for another processing procedure; data  

pre-processing turns the data into a form that will be more 

effective and easily processed for the purpose of the user. The 

main challenge for information science and data mining 

(Fouad, 2018) to extract essential information from a large  
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amount of high-dimensional data and to meet the requirement 

of Big Data`s World (Lohr, 2008). Today’s rapidly growing 

quantity of data leads to a need to analyse and process  

this data. Representation of the high-dimensional data  

is inevitable, so dimension reduction is a necessary pre-

processing step for many machine-learning techniques. 

Therefore, dimension reduction is an important method to 

address the dimensionality problem by removing the redundant 

or irrelevant information that was performed by many kinds of 

research (Huo and Smith, 2008; Sarveniazi, 2014). 

The Principal Component Analysis (PCA) is the most 

vastly used multivariate method using statistical methods. It is 

generally utilised to decrease the dimensionality of high-

dimensional data in order to examine its underlying covariance 

structure of a collection of variables. While singular value 

decomposition computes Principal Components (PCs) that are 

the favourite method for numerical data accuracy and to 

provide a simple means for identification of the PCs for the 

standard PCA. This paper describes several optimisation 

models related to PCA by determining the optimal number of 

the PCs, which are necessary to represent the high-dimensional 

data. 

Until now, Extreme Learning Machine (ELM) has more 

attention for classification and regression tasks (Feng et al., 

2015), because ELM is extremely fast learning model which 

treats many real-world classification problems with good 

accuracy rate and has more capability of time processing that is 

ensured by many researchers (Cao et al., 2016; Li, et al., 2016). 

It is based on Single-hidden Layer Feedforward Neural 

Network (SLFN) that generates the hidden layer parameters 

randomly without tuning or local minima. However, there are 

many approaches that have been proposed in recent years to 

progress the performance of the standard ELM in different 

directions (Huang, 2013; 2014; Cao et al., 2014; Iosifidis et al., 

2015; Iosifidis, 2015; Zhang et al., 2015). In our main core of 

selecting the optimal number of hidden nodes, Huang et al. 

(2006b) proposed an approach to handle the problem of 

choosing the proper number of hidden nodes by using several 

techniques. The Incremental Extreme Learning Machine  

(I-ELM) which increases the number of hidden nodes until it 

reaches a certain error (Feng, 2009; Huang et al., 2008), 

Castaño et al. (2013) used the information retrieved from PCA 

on training data to estimate the number of hidden nodes, and 

Memetic-ELM to get the optimal network parameters 

according to each task (Zhang et al., 2016).  

It is difficult to work with massive data using the most 

relational databases and statistics desktop packs simulation 

management systems to store, analysis these volumes of data, 

where it requires new processing models which have the better 

storage, making decisions, and are capablee of analysing with 

Big Data technology, so that our main contribution is to create 

the data value by increasing the processing capacity of the data 

(Snijders et al., 2012). Therefore, this study provides a  

new way for processing and analysing Big Data based on  

PCA-EELM (Elbably and Fouad, 2018) inspired by both the 

PCA and enhancement ELM, which was developed by 

implementing new activation functions for the standard EELM, 

then EELM classifier is improved by using a dimensionality 

reduction phase based on PCA. PCA-EELM is ensured to work 

effectively in (binary and multi) classification problems 

through small and large data sets. 

The proposed approaches were applied on the hybrid 

technique (PCA-EELM) (Elbably and Fouad, 2018) to 

optimise its main parameters. The first one was named as 

OPCA-OEELM which considers optimisation model with the 

main objective function that is maximising the predictive 

accuracy based on the two important constrains. The first 

constraint is selecting the optimal number of PCs which obtain 

effective representation for high-dimensional data through 

PCA, which transforms the original features to the principal 

components then uses the proposed approach to select the 

optimal components which map to the optimal features. The 

second constraint focuses on the number of hidden nodes for 

enhanced extreme learning machine. 

The second approach was named OPCA-EELM2SS. 

OPCA-EELM2SS is proposed to apply particle swarm 

optimisation (PSO) technique on stratified samples collected 

from the big data to obtain the optimal number of principal 

components. PSO is a common heuristic algorithm, which has 

significant interest from many researchers in several research 

areas and has been effectively applied to different optimisation 

real-world problems (Foody, 2002) over the years, such as data 

classification problems.  

The performance of the proposed approaches is evaluated 

using different evaluation criteria and compared with many  

of the previous works for selecting the optimal number of 

hidden nodes of ELM and for dimensionality reduction by 

feature selection techniques. Table 5 (p. 100) presents short 

description for all comparable previous works with the two 

proposed approaches, OPCA-OEELM for medical data sets 

and OPCA-EELM2SS for big data sets. 

This paper presents sections as follows: Section 2 displays 

a short review of all previous works, Section 3 is the 

background of the used algorithms such as PCA-EELM, PSO 

and short review on big data processing, Section 4 shows the 

details of proposed approaches, (OPCA-OEELM) and its 

effectiveness on medical data sets; (OPCA-EELM2SS) and its 

role in overcoming big data processing problem. The 

experimental results of OPCA-OEELM on 14 benchmark data 

sets and OPCA-EELM2SS on five big data sets are explained 

in Section 5. Finally, in Section 6, this paper is concluded and 

some future works are outlined. 

2 Related work 

2.1 PCA-based approaches 

The dimension reduction, which depends on the PCA, aims at 

reducing the dimensionality of the data by creating a set of 

derived variables, which are linear combinations of the  

original variables. Kernel-based PCA (Rizvi et al., 2016), has 

been developed for achieving efficient lower-dimensional 

scheduling in variables in Linear Parameter-Varying (LPV) 

models by reducing the number of scheduling variables to 

minimise the complexity of computation for LPV controller 

(design and implementation). Kernel-based PCA is desirable to  

get LPV models of interest in a logical form. Its purpose is to 

extract data components efficiently because of its capability  
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to perform the extraction in a high-dimensional space. The 

method can solve the problem of optimisation and achieve an 

affine representation in relation to variables of reduced 

scheduling. 

Sharma and Saroha (2015) integrated the principal 

component analysis with feature ranking because feature 

evaluation aims to select the suitable subset of features from the 

original features, but the authors found that this algorithm is 

inefficient and impractical for very high dimensionality data 

sets. To address this issue, the output of PCA, which is a set of 

reduced for uncorrelated features, is applied to feature ranking 

and evaluation algorithms to improve the computation time as 

compared to using feature evaluation and ranking for all the 

features. The proposed method has been tested and applied to 

the breast cancer data set. 

In the cloud computing environments, the development 

of dimension reduction methods can support pre-processing 

of the data and effective storage; therefore, Wu et al. (2015) 

implemented the hyperspectral PCA method on Spark 

platform, and the MapReduce model is used, taking full 

features of the high throughput access and high achievement 

capabilities of distributed computing in cloud computing 

environments. 

Wang et al. (2016) improved PCA to overcomes the 

structuring of the observations in the PC space using the linear 

additive property for normal distribution by proposed the ND-

PCA, which can exploit the variance information in the original 

data. It can obtain analytical results rather than approximate 

results. Also, it has the ability to handle data of normal 

distribution form and other additive distributions and PCA of 

wind speed time series proposed by Heckenbergerova et al. 

(2014) for concluding future ramp estimation from series of 

power forecast. In this proposed method, it can be accurate 

forecasting of wind power and Numerical Weather Prediction 

(NWP) model is not required for producing wind forecasts. 

Raihana et al. (2016) presented sparse PCA based on the 

inverse power method to carry out the sparsity of PCA 

because of the principal classical components (PCs) can be 

complicated to explicated because of the linear combinations 

of PCA, so that sparse PCA was proposed to address this 

complication problem to be suitable for reducing the 

dimensions of complex data. It is desirable to feature 

extraction for big data since the accuracy rate is larger than 

input data to any classifier. 

2.2 Medical data set classification 

Classification of the medical data relies on the performance of 

the Extreme Learning Machine (ELM) classifier, which was 

proposed by Huang et al. (2006a) to handle the training for 

(SLFN) single-hidden layer feedforward neural networks. 

Matias et al. (2014) and Chyzhyk et al. (2014) ensured that 

ELM is most appropriate for considerable training samples and 

also the influence of the number of hidden nodes using variant 

ratios of the number of features for training and testing data 

was demonstrated. 

Feature selection and classification techniques have shown 

that exploiting machine learning in high-performance 

applications aims at supporting scientific research that is based 

on the medical field. Hassan and Subasi (2016) revealed that 

the use of a classification algorithm that was based on feature 

selection and the Leaner Programming Boosting (LPBoost) 

made the processes of monitoring epilepsy seizures and  

patient management simple. Furthermore, Hassan et al. (2016) 

applied a distinguished ensemble learning, named as  

bootstrap aggregating, to discover epileptic seizures. Kirar and 

Agrawal (2017) aimed at distinguishing brain signals from 

electroencephalogram (EEG), by using a machine learning 

approach. Hassan and Haque (2015) used wireless capsule 

endoscopy videos to carry out a real-time model that aims at 

exposing bleeding in the small intestine by extracting a large 

volume of images that are classified by using Support Vector 

Machine (SVM) to discover gastrointestinal hemorrhage. On 

the other hand, the study of many genes is applied as the first 

step for all gene eliciting data sets. Therefore, Shah and 

Kussaik (2007) inspected that it is costly to gather genetic data. 

They proved that not all genes educed are considerable. 

Therefore, they focused on selecting the most convenient genes 

from the enormous genes’ data set. Therefore, the inessential 

and redundant genes are removed; then, complexity is reduced. 

Otherwise, Mohamad et al. (2009) considered a wrapper 

approach, which, after the feature selection process, delivered 

features to be provided as input to the next step, which  

is a classification method. Moreover, Alba et al. (2007) 

demonstrated that the wrapper method undertakes a proposed 

algorithm to deliver the accuracy of the classification method. 

Many of these algorithms achieved good experimental results 

when they are compared with others in terms of exactly so 

accuracy. However, there is still required more works to be 

perfect while comparing the feature selection and classification 

algorithms with respect to their achievement when applied to a 

cancer data set. Thus, time computation is a considerable 

parameter in the comparative study between these methods. 

Porkodi and Suganya (2015) exploited K-NN (K-Nearest 

Neighbours) and neural network classifier to achieve the 

highest accuracy rate for colon cancer classification. However, 

they explained that the optimisation techniques could be 

integrated during the classification process. Many algorithms 

have been applied for the selection and classification of cancer 

genes by Al-Rajab and Lu (2014), such as Genetic Algorithm 

(GA), Particle Swarm Optimisation (PSO). 

2.3 Big data reduction 

Big data can be represented by an advanced model “6Vs” 

(Gani et al., 2015), which includes the volume, velocity, value, 

variety, variability, and veracity while acquiring the data.  

Many variables in big data sets lead to the imprecate of 

dimensionality problem, which needs indefinite computational 

resources. Therefore, the data reduction is the most 

considerable phase of big data analytics. The data reduction 

operations are exploited to enhance the quality of big data. The 

data reduction operations involve a wide range of methods that 

are utilised for many aims, such as noise reduction, big data 

gathering from IoTs-based sensory data sources, and data 

streams of internet-based social media, which provide large 

amounts of unstructured and unused information. 

Salmon et al. (2014) applied noise reduction techniques to 

eliminate noise and irrelevant data based on noise non-local 

PCA; extracting features: unstructured data streams in big data 
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paradigms require a significant effort, and therefore, feature 

extraction methods are utilised to obtain the useful and 

structured data from the original big data sets.  

Many statistical methods are used to determine domain 

features from large amounts of data based on the nature and the 

type of data (Grzegorowski and Stawicki, 2015); such as 

reducing dimensions, which means that big data sets usually 

contain thousands of dimensions (i.e., attributes/features in data 

tables). Therefore, analysing this huge data set can be an issue. 

Dimension reduction techniques are used to produce highly 

pertinent data sets for big data analysis (Zhai et al., 2014)  

and for tackling missing values due to many missing values 

despite the creation of uniformly structured big data sets. 

However, it causes a minimisation of the quality of knowledge 

patterns.  

3 Background 

3.1 Hybrid approach of principle component 

analysis and enhanced ELM (PCA-EELM) 

A conceptual view of the hybrid approach PCA-EELM 

(Elbably and Fouad, 2018) is inspired by both the PCA and the 

enhancement ELM, which was developed by a lot of 

modification in the activation function of the standard EELM. 

Then, PCA-EELM improves EELM classifier by using a 

dimensionality reduction phase based on PCA, which is a 

powerful statistical technique, to identify the principal 

components in high-dimensional spaces by reducing the 

dimensions. 

EELM algorithm implements all basic computation 

functions of the standard ELM, in addition to the following 

effective functions: softmax function, softsig sigmoid function, 

and hyperbolic tangent, however, this paper will focus on using 

EELM with softmax as activation function (Tang, 2013) for  

all classification. Because the output of the function is 

interpretable as posterior probabilities, so it used for 

representing categorical distribution that is useful for multi-

class classification and multinomial logistic regression (Bishop 

and Christopher, 2006). 

The PCA-EELM has ensured to work effectively in (binary 

and multi) classification problems through small and large data 

sets by applying perfection of the single hidden layer 

feedforward neural network (SLFN) in classification tasks, 

therefore the proposed approaches in this study are based on 

(PCA-EELM). 

3.2 Particle swarm optimisation: an overview 

PSO is a simple and efficient technique because it depends 

on swarm intelligence. Therefore, PSO has the lowest time 

computation rather than genetic algorithms. 

Each potential solution is represented as a particle 

swarm. Each particle has a position vector the search space, 

which is given by  

 1 2, ,...,i i i iDx x x x


 (1) 

where D is the dimensionality of the search space and each 

particle moves to get the optimal solutions, therefore, it has 

a velocity vector that represented as 

 1 2, v ,..., vi i i iDv v


 (2) 

The personal best recorded as (pbest), which is the best 

position of the particle in all previous iterations, and  

it is updated only when the new position of the particle at the 

current iteration (k) yields a better function value rather than 

at the previous iteration (k–1). And the global best named as 

(gbest) is the position that has produced the best function 

value of all positions, and it is shared with all particles. 

During the search, the position and velocity of each 

particle are updated based on the following equations:  

     1 1k k k

i i ix x v
    (3) 

    
  

1 ( ) ( )

1 1

( )

1 1

k k k

i i i i

k

i

v x c r p k x

c r g k x

      

   
 (4) 

k + 1 indicates the next iteration number, k indicates the current 

iteration number, iv  indicates the velocity vector of particle i, 

ix  de indicates notes the position vector of particle i,  is the 

static inertia weight between 0 and 1, 1c  and 2c are the constant 

acceleration coefficients, 1r and 2r are random values 

distributed in [0, 1],  ip k  is the personal best of particle i, 

and g (k) is the global best of the swarm. Based on the local 

best positions, the global best position, and the updating criteria 

of all particles can be easily reached to the target. 

3.3 Big data processing 

The complexity of big data systems was shown in three forms 

(Jin et al., 2015); data complexity, computational complexity, 

and system complexity. Data complexity which emerges due to 

multiple formats of big data that elevates the issue of  

multi-dimensions and the complexity of inter-dimensional and 

intra-dimensional relationships. For example, the semantic 

relationship between different values of the same attribute  

(i.e., the noise level in the particular areas of the city, raises the 

inter-dimensional complexity. Likewise, the linked relationship 

among different attributes (i.e., age, gender, and health records) 

increases the intra-dimensional complexity. In any big data 

system, the increasing level of data complexity is directly 

proportional to the increasing level in computational 

complexity and while the implementation the algorithms  

and methods can handle the extremely large data volumes, the 

level of system complexity are increased because of the 

computational requirements of big data systems. 

Data preparation includes all types of processes performed 

on data to prepare it for another processing procedure; data pre-

processing turns the data into a form that will be more effective 

and easily processed for the purpose of the user.  
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4 Proposed approaches 

4.1 The proposed OPCA-OEELM 

The OPCA-OEELM approach presented in this paper for 

dimensionality reduction and classification is based on the 

PCA and enhanced ELM (EELM). The main target of the 

method is reducing the dimensional spaces of data without 

losing important information. On the other hand, the goal is 

improving the accuracy rate of the EELM classifier. The main 

defect of PCA requires the number of PCs to represent the 

high-dimensional data so that the proposed approach handles 

this defect by using PSO to select the optimal number of PCs to 

transform the data from high-dimensional space to low-

dimensional space. EELM also has a drawback that it has free 

parameters, such as the number of Hidden Nodes (HNs), initial 

weight, and bias that need to be defined by the user. Since the 

quality of ELM models depends on a proper setting of these 

parameters, the main issue for this paper trying to apply EELM 

is how to set one of these parameter values to ensure perfect 

generalisation performance of the training data set. 

OPCA-OEELM optimises two important parameters PCs 

for PCA and HNs for EELM using two phases. Firstly, the 

principal component analysis was applied to overcome the 

curse of dimensionality with choosing the proper number of 

PCs by PSO. Secondly, EELM training starts with the optimal 

number of HNs to maximise the classification performance 

using the evolution function of PSO.  

The overview of the OPCA-OEELM approach is shown 

in Figure 1, which operates in two main steps. In the first 

step, particle swarm optimisation is run on the original data 

sets to obtain the optimal number of PCs and HNs. In the 

second step, the optimised values for the number of PCs and 

HNs are used as input to PCA-EELM to reduce the space 

dimensions by eliminating dimensions that are linear 

combinations of others, and the EELM classifier is applied 

with the minimum computation time. 

Figure 1 Flowchart of OPCA-OEELM 
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Table 1 Pseudo-code of OPCA-OEELM 

Pseudo-code of OPCA-OEELM 

Input: Data set and activation function (softmax) 

Output:  The positions of particles and classification accuracy rate 

Process: 

step1:  dividing the data set using 10-fold cross-validation to training and testing data sets 

step2:  find the initial value of PCs and HNs from PSO definition 

step3:  initialise the particles with random values to the position (x) and velocity (v) 

step4:  while maximum iterations are not finished do 

           evaluate the fitness function by maximising the accuracy classification that calculated        

           from the following equation: - 

 
 

Accuracy(ACC)
TP TN

TP TN FP FN




  
  

step5: determine pbest and gbest by comparing fitness value to each particle 

step6: updating the position (x) and velocity (v) according to fitness value using equations (3) and (4).  

step7: satisfy termination criterion (maximum iteration=100) 

            if (satisfied)     

                 go to step8  

            else                  

                 go to step4  

step8:  execute dimensionality reduction using optimised PCA with PCs 

step9:  apply the optimised EELM classifier on the reduced data with HNs 

step10: Return the classification accuracy rate 

 

The first optimisation version of the hybrid approach of 

PCA-EELM is summarised in the pseudo-code of OPCA-

OEELM in Table 1. 

4.2 The proposed OPCA-EELM2SS 

The first proposed approach (OPCA-OEELM) provided the 

perfect classification accuracy as compared with the previous 

works because the used medical data sets have small numbers 

of features and records. When OPCA-OEELM is applied to big 

data sets, it takes large computation time for the optimisation 

phase. Therefore, OPCA-EELM2SS was proposed to tackle the 

big data processing tasks within the minimum computation 

time by applying the optimisation phase on stratified samples 

(samples that include the same categorical distribution of from  

 

the original data set) to get the proper number of PCs then run 

PCA-EELM within the optimised value as shown in OPCA-

EELM2SS algorithm design at Figure 2. 

Figure 2 shows that OPCA-EELM2SS goes through  

three main steps; the first step is stratified sampling process 

which is to get the optimal sample collected from each 

category with the same distribution of the original data sets, the 

second step is running the optimisation technique (PSO) on the 

stratified sample to obtain the proper number of PCs then pass 

it as input with the original data sets to the standard PCA-

EELM, which is the third step to get the optimal value of the 

accuracy rate. 

The second optimisation version of the hybrid approach 

of PCA-EELM is summarised in pseudo-code of OPCA-

EELM2SS in Table 2. 

Table 2 Pseudo-code of OPCA-EELM2SS 

Pseudo-code of OPCA-EELM2SS 

Input: Original data set and activation function (softmax) 

Output:  the positions of particles and classification accuracy rate 

Process: 

step1: apply the stratified sampling process to obtain a stratified sample with the same categorical distribution of the original data 

step2:  dividing the stratified sample to S.training and S.testing data sets 

step3:  find the initial value of PCs from PSO definition 

step4:  initialise the particles with random values to the position (x) and velocity (v) 

step5:  while maximum iterations are not finished do 

           evaluate the fitness function by maximising the accuracy classification that calculated from the following equation:  
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Table 2 Pseudo-code of OPCA-EELM2SS (continued) 

 
 

Accuracy(ACC)
TP TN

TP TN FP FN




  
 

step6: determine pbest and gbest by comparing fitness value to each particle 

step7: updating the position (x) and velocity (v) according to fitness value by 

     1 1k k k

i i ix x v
    

       1 ( ) ( ) ( )

1 1 1 1

k k k k

i i i i iv x c r p k x c r g k x            

k denotes the iteration number,  is the static inertia weight between 0 and 1, 1c  and 2c  are the constant acceleration coefficients, 1r  and 

1r  are random values distributed in [0, 1] 

step8: satisfy termination criterion (maximum iteration = 100) 

            if (satisfied)     go to step9  

            else                   go to step5  

step9:  pass the optimised number of PCs to the standard PCA-EELM 

step10: divide the original data set to training and testing data sets 

step11:  Run PCA-EELM within the optimised value of PSc 

step12: Return the classification accuracy rate 

Figure 2 Flowchart of OPCA-EELM2SS 

 

 

5 Experimental results 

The proposed approaches were carried out in R (3.3.2) on 

computer specifications of an Intel(R) Core (TM) i7-8550 

1.99 GHz CPU and 16.00 GB RAM. 

5.1 Data sets 

The achievement of the proposed approaches is proved by 

performing the experiments on 19 benchmark classification 

problems from UCI Machine Learning Repository (UCI 

Repository, 2017). The training and testing data sets, but are 

generated by ten-fold cross-validation at small data sets but, for 

big data sets the training and testing data are partitioned (3n/4) 

for training data and (n/4) for testing data, where n is the total 

number of instances. As well, the instances which include 

missing values have been ignored before execution of the 

proposed approaches. These data are widely used in many 

fields, such as medical diagnosis, physical sciences, business, 

games, and computer sciences. 
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The detailed description of all small benchmark data sets 

used in the experiments is listed in Table 3, and the detailed 

description of big data sets is listed in Table 4. Also,  

Tables 3 and 4 include the number of instances and the 

number of attributes. The achievement of the proposed 

approaches is verified by performing all the experiments on 

(binary-multi) classification problems. 

5.2 Results and discussion 

The achievement of the proposed approaches is proved on 

nineteen benchmark classification problems in many fields 

(UCI Repository). Ten-fold cross-validation is employed for 

partitioning the original data to training and testing data in 

small data sets (3n/4) for training data and (n/4) for testing 

data in big data sets that were used while learning and 

testing EELM classifier to improve the predictive accuracy. 

The accuracy, sensitivity, and specificity are the common 

statistical measures used to evaluate the classification 

performance of the proposed approaches (OPCA-OEELM and 

OPCA-EELM2SS): 

 
 

Accuracy(ACC)
TP TN

TP TN FP FN




  
 (5) 

Sensitivity or True Positive Rate 
 

TP
TPR

TP FN



 (6) 

Sensitivity or True Negative Rate 
 

TN
TNR

TN FP



 (7) 

precision + recall
F1 score = 2*

precision * recall
 (8) 

Matthews correlation coefficient 

     
       

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN

  


   
  (9) 

where TP (true positive) refers to the correctly classified 

positive case. TN (true negative) refers to the correctly 

classified negative case. FP (false positive) refers to the 

incorrectly classified negative case. FN (false negative) refers 

to incorrectly classified positive cases. 

The first proposed approach OPCA-OEELM is 

compared with many previous algorithms across medical 

data sets, and the second proposed OPCA-EELM2SS,  

which based on stratified sampling for big data processing, 

is applied across five real-world classification problems and 

is compared with other techniques as shown in Table 5. 

Table 3 Description of the small datasets 

Data sets 
#  

Observation 

#  

Attributes 
Source 

Hepatitis 155 19 

UCI  

Repository

Heart 270 13 

Vote 435 16 

German 1000 25 

Yeast 1484 10 

Ecoli 336 7 

Haberman 306 3 

Ionosphere 351 34 

Post-Op 90 20 

Pima Indians Diabetes 768 9 

Wisconsin Breast-Cancer 699 9 

Blood 748 4 

Australian Credit 690 14 

Cleveland Heart Disease 296 13 

Table 4 Description of the big data sets 

Data sets 
#  

Observation

#  

Attributes 
Size Source 

DIABETIC 

DATA 
101,766 50 18.2MB 

UCI  

Repository 

DOTA 102,943 117 23.7MB 

COVERT

YPE 
581,012 54 71.6MB 

HEPMASS 3,500,000 29 2.4GB 

SUSY 5,000,000 18 2.2GB 

 
Table 5 Description of all the comparable previous works with the two proposed approaches 

The proposed 

approach 
The previous work Description 

OPCA-

OEELM 

PCA-ELM (Castaño et al., 2013) PCA-ELM is using the information that delivered from principal components 

analysis to fit the hidden nodes of ELM. 

PCA-EELM (Elbably and Fouad, 

2018) 

PCA-EELM is constituted from PCA as a linear data reduction for dimension 

reduction with a static determination for the number of principal component 

analysis by removing irrelevant attributes to speed up the classification method and 

to reduce the complexity of computation, and EELM is achieved by modifying the 

activation function of single hidden layer feedforward neural network (SLFN) 

perfect distribution of categories. 
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Table 5 Description of all the comparable previous works with the two proposed approaches (continued) 

The proposed 

approach 
The previous work Description 

 PSO + ELM (Subbulakshmi and 

Deepa, 2015)  

The conventional PSO is integrated with the ELM for optimising the input weights 

in ELM neural network to grow the generalisation performance. 

SRLPSO + ELM (Subbulakshmi 

and Deepa, 2015) 

This self-regulated learning PSO is integrated with ELM for optimising the input 

weights in ELM neural networks to increase the generalisation performance, which 

attempts to replace the global position with both the best and worst position by the 

MSE on the validation set. 

SRM-ELM (Huang and Lai, 

2012) 

Structured risk minimisation which is proposed to obtain the optimal number of 

hidden nodes by PSO with the SRM principle that includes the empirical risk and 

VC confidence to prevent the overfitting problem. 

ELM (Huang and Lai, 2012). The original extreme learning machine with ten-fold cross-validation. 

N a b c    (Huang and  

Lai, 2012). 

Is the cut and try work to select the number of hidden nodes. 

Optimised LVQ (10  CV) 

(Goodman et al., 2002) 

There are two different forms of Linear Vector Quantisation (LVQ) “big LVQ” and 

“optimised LVQ” in which the data represent averages over three runs of 10-way 

cross-validation use in an LVQ classifier after a reasonable attempt at determining 

the proper number of output vectors for the classification problem. 
Big LVQ (10  CV)  

(Goodman et al., 2002) 

AIRS (10  CV)  

(Goodman et al., 2002) 

Artificial Immune Recognition System (AIRS) which is developed as a classifier 

that depends on the principles of resource-limited artificial immune systems 

Supervised fuzzy clustering  

(10  CV) (Abonyi and  

Szeifert, 2003) 

The fuzzy classifier is an extension of the quadratic Bayes classifier that exploits a 

mixture of models for estimating the conditional class densities, in which each rule 

can represent more classes with different probabilities.  

Fuzzy-AIS-knn (10  CV)  

(Sahan et al., 2007) 

Fuzzy-AIS-knn is a new hybrid method of machine learning by integrating a fuzzy-

Artificial Immune System (AIS) with the classical k-nearest neighbour algorithm. 

F-score + support vector machine 

(Akay, 2009) 

This method is based on a SVM, which is integrated with feature selection to 

diagnose breast cancer. 

Association rule + neural network 

(Karabatak and Ince, 2009) 

AR+NN method provides an automatic diagnosis system for detecting breast cancer 

based on Association Rules (AR) and Neural Networks (NN). In this method, AR is 

implemented for reducing the dimension of breast cancer data, and NN is used to 

obtain an intelligent classification. 

Artificial metaplasticity neural 

network (Marcano-Cedeño et al., 

2011)  

This approach is considered as an improvement in training the neural network for pattern 

classification. The algorithm is constituted by the biological metaplasticity property of 

neurons and Shannon's information theory. While the training phase, the Artificial 

metaplasticity Multilayer Perceptron (AMMLP) technique gives priority to updating the 

weights for the less frequent activations over the more frequent ones. 

Mean selection method 

(Jaganathan and Kuppuchamy, 

2013) 

Feature selection minimises the computational cost by removing irrelevant features. 

This study presents the measurement of feature relevance based on fuzzy entropy 

using three FS strategies which are devised to get the valuable subset of relevant 

features (Mean, Half selection method and Neural network selection). 
Half selection method 

(Jaganathan and Kuppuchamy, 

2013) 

Neural network for threshold 

selection (Jaganathan and 

Kuppuchamy, 2013) 

PCA-ANFIS (10  FC)  

(Polat and Gunes¸ 2007) 

In this study, the diabetes disease is detected using PCA and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) to improve the diagnostic accuracy of diabetes. PCA-

ANFIS has two phases. In the first phase, the dimension reduction is applied using 

principal component analysis. In the second phase, the diagnosis of diabetes disease 

is proceeding via an adaptive neuro-fuzzy inference classifier. 

LS-SVM (10  FC)  

(Polat et al., 2008) 

The aim of this method is the diagnosis of diabetes disease by using Generalised 

Discriminant Analysis (GDA) and Least Square Support Vector Machine 

(LS-SVM). Also, a new cascade learning system is proposed using Generalised 

Discriminant Analysis and Least Square Support Vector Machine. This method 

consists of two stages. The first stage, The GDA to discriminant features as a pre-

processing process. In the second stage, LS-SVM is used for the classification of 

diabetes data set. 

GDA-LS-SVM (10  FC)  

(Polat et al., 2008) 
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Table 5 Description of all the comparable previous works with the two proposed approaches (continued) 

The proposed 

approach 
The previous work Description 

 MLNN with LM (10  FC) 

(Temurtas et al., 2009) 

This study includes a multilayer Neural Network (MLNN) structure, which was 

trained by the Levenberg-Marquardt (LM) algorithm and a Probabilistic Neural 

Network (PNN) structure. Diabetes diagnosis by a suitable interpretation of the 

diabetes data is a necessary classification problem to overcome all risks of diabetes.
PNN (10  FC)  

(Temurtas et al., 2009) 

LDA-MWSVM  

(Calisir and Dogantekin, 2011) 

LDA-MWSVM is introduced based on Linear Discriminant Analysis (LDA) and 

Morlet Wavelet Support Vector Machine (MWSVM). The structure LDA-MWSVM 

for the diagnosis of diabetes is included in the feature extraction and feature 

reduction stage by using the (LDA) method and the classification stage by using the 

(MWSVM) classifier stage. 

Evolutionary sigmoidal unit 

neural network (ESUNN) 

(Hervás-Martínez et al., 2008) 

This method depends on a special class of feed-forward neural networks (product-

unit neural networks). Product-units are used the multiplicative nodes instead of the 

additive nodes to obtain the possible strong interactions between variables then the 

evolutionary algorithm is applied to determine the basic structure of the product-

unit model and to estimate the coefficients of the model by the softmax 

transformation as the decision rule and the cross-entropy error function because of 

its probabilistic interpretation. 

Evolutionary product unit  

neural network (EPUNN) 

(Hervás-Martínez et al., 2008) 

Multi logistics regression + 

EPUNN (Hervás-Martínez  

et al., 2008)  

A multi-logistic regression approach depends on the integration of linear and 

product-unit models, where the product-unit nonlinear functions are constructed 

with the product of the inputs raised to arbitrary powers. The estimation of the 

coefficients of the model is carried out in two steps. In the first step, the number of 

product-unit basis functions and the exponents’ vector is selected by means of an 

evolutionary neural network algorithm. In the second step, a standard maximum 

likelihood optimisation method determines the rest of the coefficients in the new 

space given by the initial variables and the product-unit basis functions previously 

estimated. 

C4.5 (Cheung, 2001) The standard C4.5 decision tree and naïve Bayes are performed to compare the 

classification results with Bayesian Network with Naïve Dependence (BNND). 

However, if there are many dependencies are found, then the prediction 

performance of the network is significantly reduced by (BNNF). 

Naive Bayes (Cheung, 2001) 

BNND (Cheung, 2001) 

BNNF (Cheung, 2001) 

AIRS (Polat et al., 2005) A classification method to diagnosis heart disease by the supervised artificial 

immune system (AIRS), which is based on the principles of resource-limited AIR. 

Hybrid neural network 

(Kahramanli and Allahverdi, 

2008) 

The hybrid neural network is presented for classification of data of a medical 

database using a Fuzzy and crisp value neural network that includes an Artificial 

Neural Network (ANN) and a Fuzzy Neural Network (FNN). 

Neural networks ensemble  

(Das et al., 2009) 

A neural network ensemble method is developed by integrating the posterior 

probabilities or the predicted values from multiple predecessor models. 

OPCA-

EELM2SS 

PCA-EELM (Elbably and Fouad, 

2018) 

PCA-EELM is described in the second row in the same Table 5. 

ICA-EELM The standard independent component analysis is integrated as a dimensionality 

reduction technique with the enhanced ELM to compares the effectiveness of the 

PCA for big data sets. 

 

The reason for the optimisation of PCA-EELM is the 

complementary strength of integration between PCA and 

EELM that achieves the best performance by assessing it 

against many algorithms (Elbably and Fouad, 2018; Castaño  

et al., 2013) in a lot of previous work. Therefore, OPCA-

OEELM was implemented to optimise the number of principal 

components, which are necessary to PCA as dimension 

reduction phase; in addition, the classification performance is 

improved by the optimal number of hidden nodes as shown in 

Table 6, which ensures the effectiveness of the proposed 

approach OPCA-OEELM by comparing it with two previous 

versions of ELM. 

When the proposed approach is compared with the 

conventional classifiers from previous work (PCA-ELM and 

PCA-EELM), it is found that OPCA-OEELM achieved 

better results in terms of the number of hidden nodes and 

accuracy of classification across all data sets. 

Figure 3 illustrates clearly the value of choosing  

the number of hidden nodes by the proposed approach.  

The optimal number of principal components (features), 

which is used for improving classification performance,  

is justified in Figure 4. These figures obviously  

discover the benefit of selecting the hybrid technique (PCA-

EELM). 
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Table 6 Comparison results of the proposed approach with two main versions of ELM as a previous works 

Data set 
Previous work (PCA-ELM) Previous work (PCA-EELM) Proposed Approach (OPCA-OEELM) 

NHN Accuracy NHN Accuracy NHN Accuracy 

Hepatitis 12 79.487 10 89.30 8 91.61 

Heart 8 77.941 10 83.08 4 93.78 

Vote 11 92.885 10 94.36 9 98.29 

German 28 76.000 10 69.96 16 93.59 

Yeast 7 51.482 10 89.53 9 90.16 

E.coli 5 87.882 10 98.90 6 98.99 

Haberman 3 76.315 10 97.23 7 96.00 

Ionosphere 17 86.363 10 98.14 12 99.11 

Post-Op 9 81.818 10 95.94 6 96.51 

Pima Indians Diabetes 6 72.875 10 99.18 9 99.72 

Mean 10.6 78.304 10 91.562 8.6 96.02 

Figure 3 Comparison results of the number of hidden nodes for PCA-ELM, PCA-EELM, and OPCA-OEELM 

 

Figure 4 Classification accuracy parameters with PCA-ELM, PCA-EELM, and OPCA-OEELM 
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While running the proposed OPCA-OEELM, many graphs 

were considered to show the capability of OPCA-OEELM to 

search for the optimal solution in two dimensions; one  

is for PCA; the other one is EELM as illustrated in  

Figures 5 and 6. 

5.2.1 Effectiveness of OPCA-OEELM for medical 

data set classification 

Artificial Neural Networks (ANNs) are widely utilised to treat 

the real-world classification problems in medical applications, 

which are prime data mining problems. ANN algorithms have 

good performance and poor computation time. Therefore, 

disease diagnosis, which is managed by machine learning 

methods, is based on ANNs. 

The proposed OPCA-OEELM was tested on five medical 

data sets of the UCI Repository for handling data classification, 

By applying the proposed OPCA-OEELM algorithm for the 

considered data sets, experimental results indicate that the 

proposed model is able to achieve better classification accuracy 

rate compared to the previous algorithms. Hence, the 

classification performance of the proposed approach using the 

common statistical measures (sensitivity and specificity) which 

were developed to get the performance of classification 

techniques. 
Table 7 shows the results for several feature selection 

algorithms on the breast cancer data set. It is observed that 

the highest classification accuracy rate is achieved by the 

proposed approach (OPCA-OEELM), therefore, Figure 7 

displays the classification accuracy parameters for PSO-

ELM and SRLPSO-ELM classifier and the proposed 

approach OPCA-OEELM in terms of accuracy, sensitivity, 

and specificity. 

Figure 5 The proposed approach at iteration 1 

 

Figure 6 The proposed approach at iteration 100 

 

Table 7 Classification results with the breast cancer data set 

Methodology adopted 
Accuracy  

(%) 

Sensitivity  

(%) 

Specificity  

(%) 

Number of  

selected features

Optimised LVQ (10  CV) (Goodman et al., 2002) 96.70 91.29 92.34 3 

Big LVQ (10  CV) (Goodman et al., 2002) 96.80 95.23 96.10 3 

AIRS (10  CV) (Goodman et al., 2002) 97.20 96.92 95.00 4 

Supervised fuzzy clustering (10  CV) (Abonyi and Szeifert, 2003) 95.57 98.23 97.36 5 

Fuzzy-AIS-knn (10  CV) (Sahan et al., 2007) 99.14 99.56 100 5 

F-score + support vector machine (Akay, 2009) 99.51 99.24 98.61 4 

Association rule + neural network (Karabatak and Ince, 2009) 97.4 93.12 91.26 5 

Artificial metaplasticity neural network (Marcano-Cedeño et al., 

2011) 
99.26 100 97.89 5 

Mean selection method (Jaganathan and Kuppuchamy, 2013) 95.99 93 97 4 

Half selection method (Jaganathan and Kuppuchamy, 2013) 96.71 94 98 5 

Neural network for threshold selection (Jaganathan and 

Kuppuchamy, 2013) 
97.28 94 99 7 

PSO + ELM (Subbulakshmi and Deepa, 2015) 99.62 99.61 98.93 5 

SRLPSO + ELM (Subbulakshmi and Deepa, 2015) 99.78 100 100 4 

Proposed OPCA-OEELM 99.98 100 98.98 4 
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Figure 7 Classification results with breast cancer data set 

 

 

In Pima Indians Diabetes Data set, while comparing the 

proposed approach with other classification algorithms as 

shown in Table 8, it is observed that OPCA-OEELM achieved 

a good increase in classification accuracy because it was 

increased from 93.09% to 96.11 with only three principal 

components and these results are graphically represented in  

Figure 8. 

In Heart-Statlog Data set, Table 9 includes the 

comparison results between the proposed approach  

(OPCA-OEELM) and many different feature selection 

algorithms, which were applied to the Heart-Statlog data set. 

From these results, it is observed that OPCA-OEELM had 

the best classification accuracy parameters in terms of 

accuracy rate, sensitivity, and specificity, as shown in 

Figure 9. 

The results of applying the common techniques and the 

proposed approach on the hepatitis data set are presented in 

Table 10. These results obtained by using only four 

principal components achieved a little increase in all 

classification accuracy parameters. However, this small 

increase makes any medical application more accurate as 

graphically represented in Figure 10. 

Table 8 Classification results with Pima Indians diabetes data set 

Methodology adopted 
Accuracy  

(%) 

Sensitivity 

(%) 

Specificity  

(%) 

Number of  

selected features 

PCA-ANFIS (10  FC) (Polat and Gunes¸ 2007) 89.47 70 71.1 5 

LS-SVM (10  FC) (Polat et al., 2008) 78.21 73.91 80 4 

GDA-LS-SVM (10  FC) (Polat et al., 2008) 79.16 79.1 83.33 5 

MLNN with LM (10  FC) (Temurtas et al., 2009) 79.62 70 70.31 4 

PNN (10  FC) (Temurtas et al., 2009) 78.05 71 70.5 3 

LDA-MWSVM (Calisir and Dogantekin, 2011) 89.74 83.33 93.75 5 

Mean selection method (Jaganathan and Kuppuchamy, 2013) 76.04 71 78 3 

Half selection method (Jaganathan and Kuppuchamy, 2013) 75.91 69 79 4 

Neural network for threshold selection (Jaganathan and 

Kuppuchamy, 2013) 
76.04 71 78 3 

PSO + ELM (Subbulakshmi and Deepa, 2015) 91.27 85.26 94.10 4 

SRLPSO + ELM (Subbulakshmi and Deepa, 2015) 93.09 91.47 96.29 3 

Proposed OPCA-OEELM 96.11 95.65 96.11 3 
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Figure 8 Classification accuracy parameters for Pima Indians diabetes data set 

 

Table 9 Classification results with the Heart-Statlog data set 

Methodology adopted 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity  

(%) 

Number of  

selected features 

Evolutionary sigmoidal unit neural network (ESUNN)  

(Martínez-Estudillo et al., 2008) 
83.22 84.32 81.65 5 

Evolutionary product unit neural network (EPUNN)  

(Martínez-Estudillo et al., 2008) 
81.89 83.67 84.91 4 

Multi-logistic regression + EPUNN (Hervás-Martínez, et al., 2008) 83.12 78.15 80.59 5 

Mean selection method (Jaganathan and Kuppuchamy, 2013) 84.44 85 84 6 

Half selection method (Jaganathan and Kuppuchamy, 2013) 84.81 85 84 7 

Neural network for threshold selection (Jaganathan and  

Kuppuchamy, 2013) 
85.19 85 86 4 

PSO + ELM (Subbulakshmi and Deepa, 2015) 85.88 86.00 86.03 4 

SRLPSO + ELM (Subbulakshmi and Deepa, 2015) 89.96 87.79 88.42 3 

Proposed OPCA-OEELM 93.78 92.98 91.00 3 

Figure 9 Classification accuracy parameters for Heart-Statlog data set 
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Table 10 Classification results with the Hepatitis data set 

Methodology adopted 
Accuracy  

(%) 

Sensitivity 

(%) 

Specificity  

(%) 

Number of selected 

features 

Conventional artificial neural network (Reibnegger et al., 1991) 97.00 92.31 94.5 19 (All) 

Mean selection method (Jaganathan and Kuppuchamy, 2013) 82.58 87 60 8 

Half selection method (Jaganathan and Kuppuchamy, 2013) 85.16 90 66 10 

Neural network for threshold selection (Jaganathan and 

Kuppuchamy, 2013) 
85.16 90 66 10 

PSO + ELM (Subbulakshmi and Deepa, 2015) 97.43 93.65 95.71 7 

SRLPSO + ELM (Subbulakshmi and Deepa, 2015) 98.71 94.27 96.04 6 

Proposed OPCA-OEELM 98.99 95.55 97.47 4 

Figure 10 Classification accuracy parameters for Hepatitis data set 

 

 

In Cleveland Heart Disease Data set, all used previous 

medical applications are considered binary-class classification 

problems. However, this problem is the only multi-class 

classification problem with five classes; therefore, Table 11 

and Figure 11 illustrate the high, increasing percentage  

in classification accuracy that was improved from  

91.33% to 96.54% using the proposed approach (OPCA-

OEELM) 

Table 11 Classification results with the Cleveland Heart Disease data set 

Methodology adopted 
Accuracy  

(%) 

Sensitivity  

(%) 

Specificity  

(%) 

Number of  

selected features

C4.5 (Cheung, 2001) 81.11 77.23 76.58 13 (All) 

Naive Bayes (Cheung, 2001) 81.48 80.97 81.22 4 

BNND (Cheung, 2001) 81.11 82.13 80.42 3 

BNNF (Cheung, 2001) 80.96 76.93 75.81 5 

AIRS (Polat et al., 2005) 84.50 75.34 72.96 13 (All) 

Hybrid neural network (Kahramanli and Allahverdi, 2008) 87.40 93.00 78.50 6 

Neural networks ensemble (Das et al., 2009) 89.01 80.95 95.91 13 (All) 

Mean selection method (Jaganathan and Kuppuchamy, 2013) 81.75 82 82 6 

Half selection method (Jaganathan and Kuppuchamy, 2013) 83.44 84 83 7 

Neural network for threshold selection (Jaganathan and  

Kuppuchamy, 2013) 
84.46 82 82 3 

PSO + ELM (Subbulakshmi and Deepa, 2015) 89.47 94.49 96.02 5 

SRLPSO + ELM (Subbulakshmi and Deepa, 2015) 91.33 95.46 97.29 3 

Proposed OPCA-OEELM 96.54 95.68 97.67 6 
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Figure 11 Classification accuracy parameters for Cleveland Heart Disease data set 
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Table 12 Comparison results of the proposed approach with other previous work in the domain of improving the number of hidden 

nodes 

 SRM-ELM ELM N a b c    OPCA-OEELM 

 NHN Accuracy (%) Range of NHN Accuracy (%) Range of NHN Accuracy (%) NHN Accuracy (%)

Haberman 7±1 73.86 4~9 73.95 3~12 73.81 7±4 96.00 

Blood 17±3 86.73 15~45 86.92 3~12 86.13 8±2 97.52 

Pima 17±2 79.09 10~17 79.36 4~13 79.18 9±5 96.11 

Ionosphere 25±5 90.40 25~55 91.09 7~16 85.64 12±4 99.11 

Breast Cancer 15±6 99.45 10~50 99.60 4~13 99.60 8±2 99.98 

Australian Credit 17±3 86.53 13~23 86.53 5~14 85.18 13±6 94.73 

 
 

From the result of applying the proposed approach on five 

medical data sets and comparing it with other previous 

algorithms, the proposed approach (OPCA-OEELM) has 

proven its effectiveness in binary and multi-class classification 

tasks with just 100 iterations, otherwise, most previous works 

use a maximum iteration of 500 as the termination criterion. 

Especially, in the domain of optimising the number of 

hidden nodes, the performance of OPCA-OEELM was 

evaluated using the classification accuracy rate and the 

number of hidden nodes, and these results are compared 

with other algorithms in Table 12 (Huang and Lai, 2012). 

The first is SRM-ELM, which used the value of position p 

as hidden node number to be the key link from PSO to ELM 

then at every iteration position p and v will be updated; the 

second is the standard ELM with ten-fold cross-validation; 

and the third as executed by the cut and try work 

N a b c    where N is the number of hidden nodes for 

ELM, a and b are the input and output nodes and c is a 

random number in [1:10]. 

Moreover, for the purpose of explanation, Figure 12 

shows the box plot, which represents the percentage 

accuracy over three different algorithms over all data sets 

using SRM-ELM, ELM, the cut-try work to calculate N  

 

 

(number of hidden nodes) for ELM and. It is obvious from 

Figure 12 that the OPCA-OEELM is located at the upper side 

of the figure, which indicates that the proposed approach had 

the best accuracy scores of all the other algorithms. 

Figure 12 Boxplot for all optimisation techniques for the number 

of hidden nodes 
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5.2.2 The proposed OPCA-EELM2SS for big data 

processing 

Data sets are gradually growing larger in size.  

As a result, many techniques have obstacles for analysing 

data sets to obtain useful knowledge (García-Pedrajas  

and de Haro-García, 2014). The high computation times  

and storage requirements of the existing classification 

algorithms make them inapplicable for these huge data sets 

(Hernandez-Leal et al., 2013). However, the size of the data 

set by selecting a representative subset has two main 

advantages: it reduces the optimisation time required to get 

the proper number of the PCs, and it accelerates the 

classification algorithms within reduced data (Dornaika and 

Aldine, 2015).This subset is generated using stratified 

random sampling, which involves dividing the entire 

population into homogeneous groups, which are called 

strata (singular is stratum), then random samples are then 

selected from each stratum. A stratified sample is carefully 

selected to be the input of the optimisation technique (PSO) 

without minimising the predictive power of the classifier 

trained with such a subset (Nanni and Lumini, 2011). 

In the domain of improving the number of feature 

selection, feature selection is an important phase for real-world 

classification problems. PCA has been used for the dimension 

reduction phase to remove all irrelevant or redundant features. 

However, most classification techniques are expensive 

computations. Therefore, PCA is combined with an Enhanced 

Extreme Learning Machine (EELM). However, PCA depends 

on the main parameter, which is the number of principal 

components, to transform the original data from the high-

dimensional space to the low-dimensional space. The proposed 

approach in dimension reduction phase, experiments conducted 

over five big data sets, and the results showed that the proposed 

approach (OPCA-EELM2SS) is capable of producing the 

optimal number of the general feature subsets (principal 

components). Hence, PCA is able to remove irrelevant, noisy, 

or redundant features while preserving the classification 

accuracy rate. These results were compared with the classical 

PCA-EELM classifier and the classical ICA + EELM 

classifier, as shown in Table 13. 

As an outline of the experimentation with large size data 

sets, the proposed approach achieved competitive results in 

terms of accuracy, sensitivity, and specificity, F1, MCC, 

AUC. Finally, considering execution time, the algorithms 

presented in this paper were able to classify the data sets 

much faster than the proposed approach, but within the 

worst classification accuracy. OPCA-EELM2SS achieved 

the maximum classification accuracy rate with the larger 

computation time due to the optimisation phase (i.e., For 

SUSY data set requires 849 s for optimisation phase, 

although the proposed approach requires 32.19 s to run 

classification within the optimised value of PCs). 

Table 13 The results of optimisation of the reduction phase 

Model 
Data set 

DIABETIC DOTA COVERTYPE HEPMASS SUSY 

PCA+EELM 

Accuracy (%) 84.55 44.10 85.65 42.58 52.31 

Sensitivity (%) 75 54.88 86.57 44.51 51.67 

Specificity (%) 94.515 66.69 85.71 73.56 52.65 

F1 69.825 43.67 84.39 77.43 51.40 

MCC 0.6790 0.3480 0.8571 0.3504 0.4843 

AUC 0.8540 0.6305 0.8647 0.3566 0.526 

Time(s) 1.95 22.80 48.30 64.72 224.21 

ICA+EELM 

Accuracy (%) 35.26 41.98 33.48 45.45 94.81 

Sensitivity (%) 34.17 43.07 34.22 46.14 95.56 

Specificity (%) 64.93 67.67 73.43 56.96 95.67 

F1 31.74 35.52 13.10 34.10 95.84 

MCC 0.3057 0.3408 0.1636 0.3408 0.9212 

AUC 0.3015 0.3166 0.2410 0.2702 0.9567 

Time(s) 2.68 37.16 66.70 111.42 158.13 

OPCA+EELM2SS 

Accuracy (%) 90.45 86.95 91.47 94.58 96.15 

Sensitivity (%) 91.56 87.55 90.99 95.21 96.00 

Specificity (%) 92.12 88.14 92.58 95.47 96.65 

F1 91.57 85.88 91.66 93.33 95.78 

MCC 0.9299 86.64 0.9101 94.01 0.9457 

AUC 0.9001 0.8523 0.9233 0.9539 0.9677 

Time(s) 129+0.90 355 + 4.46 490+13.80 620 + 21.9 849 + 32.19 
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The performance of the proposed OPCA-EELM2SS 

approach is proved by applying it to five genuine big data 

set classification problems (UCI Machine Learning 

Repository). The specification of these problems is listed in 

Table 10. Figure 14 demonstrates the mean performance 

parameters of PCA-EELM, ICA-EELM, and OPCA-

EELM2SS techniques for all big data sets based on the 

enhanced extreme learning machine within various feature 

selection algorithms. It reveals the effectiveness of OPCA-

EELM2SS over PCA-EELM and ICA-EELM approaches 

since it shows the PSO based approach provides higher 

accuracy value. The results strongly suggest that the 

proposed hybrid approach can aid in the dimensionality 

reduction. However, OPCA-EELM2SS takes a large amount 

of time for finding the optimal value of the number of PCs 

as illustrated in Figure 13; the PSO-based methods applied 

in this work are the best way to reduce the time needed for 

executing the algorithm after the optimisation phase.  

Finally, the experimental results show that OPCA-

OEELM and OPCA-EELM2SS is a competitive approach in 

the classification tasks with optimal parameters, which can 

be employed efficiently in various fields. 

Figure 13 Comparison of computation time in milliseconds across big data sets 

 

Figure 14 Mean performance parameters of OPCA-EELM2SS across big data sets 
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6 Conclusions and future work 

Due of the excellent generalisation performance of PCA-

EELM revealed from the experimental results across many 

data sets to withstand the computational complexity of ELM in 

SLFN, therefore, in this paper, two new hybrid approaches that 

integrate  particle swarm optimisation (PSO) algorithm with 

the principal component analysis-enhanced extreme learning 

machine (PCA-ELM) for classification and reduction problems 

are presented for obtaining the optimisation versions of 

approach PCA-EELM. The first version named OPCA-

OEELM is proposed for improving data processing by using 

PSO in two dimensions, one for determining the optimal 

number of principal components and the other for selecting the 

proper number of hidden nodes in SLFN. The limitation of this 

proposed approach is that all experimental results are applied 

on supervised classification problems, what about regression 

and unsupervised problems. The second approach is  

OPCA-EELM2SS which optimise the number of principal 

components for big data sets by applying the optimisation 

phase on a perfect stratified sample generated from the original 

data set. However, from experimental results of OPCA-

EELM2SS obtained from good classification performance 

parameters across several data sets, it was concluded that this 

approach is also giving better results in terms of time 

computation compared to the results that are obtained, but, after 

optimisation phase. So, in the future work, optimisation phase 

will be executed on any parallel distributed environments such 

as Hadoop or Spark to overcome the time computation 

problem for real-world applications. 

In the future, the approaches can be enhanced in the 

following three directions. In the first direction, PCA can be 

improved to treat the nonlinear dimensionality reduction issues 

by using nonlinear functions for PCA or integration of the 

kernel technique with PCA. In the second direction, this study 

presents the concept of improvement for reduction and 

classification phases to achieve the perfect analysis of data, 

however, for just numerical data sets, so that EELM can be 

improved to have the ability to process any type of data sets. In 

the third direction, a single layer of EELM will be replaced by 

a multi-layer feedforward neural network for testing the 

effectiveness of the multi-layer of EELM.  
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